is more pronounced: The velocityprofiles in the flows are not the same in all the sections, and the ratio of
the flow rates K in the majority of the sections is less than 0.7. The tabulated data also confirm that a re-
duction in Ra is accompanied by an increase in the three-dimensional nature of the flow.

Hence, the presence of transverse ribbing on one of the walls of a vertical convection layer of liquid
causes the appearance of three-dimensional flow. The presence of this phenomenon in the flow eliminates
the possibility of calculating the flow parameters using methods applicable to plane-parallel flows and re-
quires a special study.

The author thanks A. G. Kirdyashkin for suggesting the investigation.

LITERATURE CITED

1. A. A. Predtechenksii, A, G. Kirdyashkin, and V. S. Berdnikov, ''Stability of free convective flow of a
liquid in a plane inclined Iayer,” in: Modern Problems of Thermal Gravitational Convection [in Rus-
sian], Inst. Teplomassoocbmena, Akad. Nauk BSSR, Minsk (1974).

2.  B. A. Fidman, "The velocity field in water flow when there is a sudden increase in depth,"' Izv. Akad.
Nauk SSSR, Otd. Tekh. Nauk, No. 4 (1953).

3. E. D. Mulls, "On the closed motion of a fluidin a square cavity," J. R. Aeronaut. Soc., 69, 116 (1965).

4, V. A. Bogatyrevetal., "Experimental investigation of flow in a trench,” Zh. Prikl. Mekh. Tekh. Fiz.,
No. 2 (1976).

DRAINING LIQUID-FILM SOLITONS

L. N, Maurin and A, A, Tochigin UDC 532.592

One-dimensional solitary waves (solitons) which can move on the surface of a thin layer of a viscous
liquid, draining in a vertical plane, are investigated. The first (experimental) description of such waves was
given in {1]; later, quantitative measurements of their characteristics were carried out [2, 3] and attempts
were made to explain them theoretically. In [4~6] the nature of these waves are discussed and some of their
properties are pointed out. In [7] the view is put forward that a stationary solution is the limiting solution of
a quasiharmonic type as the wave number is reduced. In this paper we carry out a qualitative analysis of the
evolution of a nonstationary soliton and on the basis of the analysis we explain its shape. The fundamental
characteristics of a stationary soliton (the amplitude and velocity) are calculated and the results obtained are
compared with experimental data.

1. The equation for the waves in a vertically draining film of viscous liquid for low Reynolds numbers
is well known and can be obtained by different methods. Assuming long weakly nonlinear waves, the equation
takes the form

@ + 3(Px + 9@, 1 Re @y + Wy = 0, 1.1

where ¢ = 6(h—(h))/(h); h is the local thickness of the film, {(h) is the thickness of the film averaged
over the length, t is dimensionless time, x is the dimensionless vertical coordinate (downwards) (the scale
for measuring the length is ( h), the scale for measuring time is 3vg (h)™?, v is the viscosity, and g is the
acceleration due to gravity), Re = 2g(h)%5,? is Reynolds number, and W = g/pg(h¥ is Weber's number (¢
is the surface tension and p is the density of the liquid).

Together with the Burgers and Korteweg —de Vries equations, Eq. (1.1) belongs to the number of so~
called nonlinear evolution equations. The treatment of the quantities ¢ and ¢?/2 as the momentum density
and energy density is common fo these equations (this treatment is related to the Galilean invariance of the
nonlinear evolution equations). By confining ourselves henceforth to considering only solitary waves (solitons)

for which ¢ — 0 as x — £, in which case there are integrals of the form - S 9% (2, 1) dr, j‘ o2 (z, t) dz,

Ivanovo. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 47-54, July-
August, 1979, Original article submitted June 4, 1978.
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oo

j' 02, (x t)dz, we obtain from (1.1) the laws of variation of the momentum and the energy »- s Qdx =

3 ¢ »

W o = 5 ¢’dzr — WS ¢idz. It can be seen that the term Re @gx in Eq. (1.1) describes the pumping
of energy into- the wave proportmnal to the Reynolds number, while the term Woyyyy describes the energy
dissipation, where energy pumping occurs at the low frequencies and dissipation at the high frequencies.

We will now use the momentum of a soliton to define the idea of velocity: We will define the velocity of
a soliton as the velocity of propagation of momentum (for a soliton, which is formed localized space and has
a considerable spectral spread of wave numbers and in which energy exchange with the medium occurs by
pumping and dissipation, the definition of the velocity as the group velocity at which the energy is propagated

is not successful). By defining the position of the momentum as 7 = _S‘ zodr / (' @dz , we obtain (using (1.1))

the following expression for the velocity of a soliton:

i ‘T z9,dz j.? pldz
=g = e =3+5 %
| dz [ ¢d=

Note that the definition of the velocity of a wave packet as the velocity of propagation of the momentum for
linearized spectrally narrow wave packets leads to the usual group velocity. In fact, we will consider a per-
turbation having the form of a spectrally narrow wave packet with a carrier wave number kj: ¢(x, t) =

A(x, t) exp(—iky x + iwgt), where A(x, t) is a slowly varying amplitude (decreasing as x — =), Expanding
A(x, t) in a Fourier integral we obtain

oo

¢z, t) = i a (k) eila—koYx-i(a(R)-0o)t ]
We further have
[ 2gdz [ a(kye iO-edigy [ geith-h®gr _om | ' o (k) e U@~ § (5 ko) dk E,
- -0 —oa —oc —o00 . . o
SR el = B e
[ odz [ a(me ooty [ gith=hoc gy 2n [ a(k) e MO0l § (k — ky) di 0

-0 - -0 —o0

From this we obtain vg = dx/dt = dw/dk | = kg
Turning now to a discussion of the properties of the solitons of Eq. (1.1) we note that in view of the con-
>
servation of the quantity fgo @dxwe can introduce a time~invariant classification of solitons, namely, we will call

a soliton positive (negative) if its momentum (which has the geometrical meaning of area) is positive (nega~
tive). In this case, it follows from the expression given above for vg (the soliton velocity) that for a positive
soliton vg > 3, and for a negative soliton vg < 3. We will recalculate (1.1) to the reference system £ = x - 3t

@ + @ + Re gz + Woggez = 0. 1.2)
It can be seen that (1.2) is invariant to the transformation £é— —¢, ¢ — —¢. Since this transformation converts
a positive soliton into a negative one, we see that a negative soliton is simply an inversion (in the system of
axes £ = x—3t and y —(h)) of a positive soliton. Hence, below, to be specific, we consider a positive soli-
ton.

We will now make a qualitative analysis of the part played by the individual terms in Eq. (1.2) in the

evolution of a (positive) soliton, regarding them as terms which make a contribution to ¢ . To do this we will
consider the equations

9+ 99 =0, ¢, + Re gzz = 0, ¢, + Wepgggr = 0. (1.3)

The first of these equations describes a simple wave ¢ = f(¢ — ¢t). The motion of this wave is accom-
panied by an increase in the curvature of the leading front (in the ¢ system) and a reduction in the curvature
of the trailing front.
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If ¢(ty, £) = 0, the leading front will be the right front (a simple positive wave moves to the right).
This determines the role of the term pgg.

The second of Eqs. (1.3) describes diffusion with a negative coefficient. Hence, the term Re ¢ leads
to a monotonic increase in the gradients in the wave (it is responsible for the instability of the trivial solu-
tion ¢ = 0). ,

To explain the part golayed by the term chg (e We consider the third of the equations (1.3). Its solution
has the form ¢ &, 7) = —2%- S a(k) exp (— ikE — Wkit)dk, a (k)= j‘ ¢ (&, 0) exp (ikE) dE . Usingthe method of station-
ary phase, we cbtain the asymptotic for large £ (and for large t)

- 3,—17,
9E 8= V?—n (4Witk?)~V°Real {a [E(ZVZF/;] exp {_ 3@ + 0/ 3) §V° (AW - 30]). L L.4)

B is seen from (1.4) that the term Wo g leads to a reduction in the function ¢ and its gradients, but
(and it is important to emphasize this) this reduction, unlike diffusion, has a nonmonotonic character, and has
the form of decaying oscillations (on both sides). But it can also be seen that the phase of these oscillations
is constant when ¢ 3413 - const, and, of course, the phase velocity of the oscillations is equal to £~ ¢ 3/4,
Since t is assumed to be large, the oscillations do not in practice move with respect to the soliton.

The combined action of all the terms in (1.2) is such that when a sufficiently coarse-amplitude (but
mildly sloping) perturbation (t;, £} = 0 acts, the term ¢¢; initially plays a decisive role in its evolution,
deforming this perturbation in such a way that the leading (in the £ system) (right) front becomes steep, while
the trailing (left) front becomes more mildly sloping. Since only the slope of the leading front becomes fairly
large, at points of considerable slope considerable dispersion terms Re ¢ £E and W¢ gert arise, the actions
of which are different: Whereas the first of these tends to increase the gradient ¢, the second, on the other
hand, decreasesthese gradients. In the final analysis it is the action of the term Woggg which stabilizes the
slope of the wavefront and prevents it from reversing.

Since, in addition, this term produces (stationary) oscillations attenuating along £, these oscillations
also occupy part of the leading front (on the mildly sloping trailing front of the wave the smallness of the
gradients enables one to neglect the effect of the dispersion terms so that, in particular, oscillations also do
not occur there),

Since when ¢(ty, ¢) = 0 the velocity of propagation of a disturbance is positive in the £ = x - 3t sys~
tem, it moves to the right both with respect to the laboratory reference system x, and with respect to the ¢
system. Hence, in both reference systems the leading front is one and the same = the right front of the wave,
and in connection with what was said above the soliton acquires with time the shape shown in Fig. 1a. When
¢ (ty, £) = 0 the perturbation moves to the left with respect to the ¢ reference system so that its steep front
will be the left front. In the x reference system this front is the trailing front of the soliton. Since dispersion
spreading occurs only at the steep front, in a negative soliton the trailing front will be spread (Fig. 1b).

This account agrees with the results of experimental observations [1-3]. However, experiments indi-
cate quite definitely the existence of positive and not negative solitons. This is obviously due to the fact that
a clearly expressed soliton (as is seen from experiments) has a large amplitude which exceeds severalfold
the average thickness of the film. This is only for positive solitons (in negative solitons the amplitude, of
course, cannot exceed the average thickness of the film, otherwise adhesion to the wall occurs; negative soli-
tons, being of low amplitude, cannot be seen on a background of large-amplitude positive solitons).

2. The above-mentioned physical mechanism by which energy is pumped at low frequencies and dissi~
pated at high frequencies, in principle, enables the energy to remain constant, which should make stationary
motion of a soliton possible, i.e., a solution of Eq. (1.1) for which ¢ (%, t) = ¢(x — ct). For stationary motion
(1.1) takes the form

—cg’ + 3¢’ + 99’ + Re ¢’ + WolV =0, (...) = didu, @.1)
u=2x-—ct.

Integrating this equation with the boundary condition ¢ — 0 as u —~« (or u-— + <), we obtain .
B3—0cp+ 92+ Reg +Wo'"' =0,0—>0 for u— +oo. 2.2)

Hence we have two relations for a stationary soliton
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g 1
(3—-c)§q>du+—%-5?cp’du—:0, ?(3—c+—gﬂ)q>”du=0. 2.3)

- It follows from the second of the relations (2.3) that the brackets (3 —c + ¢/ 2) alternate, and since when
n—+x, 9= 0 we have sup | ¢ | > 2| ¢ —~ 3|. Introducing the amplitude of the soliton A = sup |¢ — 0], we
obtain

A4 > 2lc — 3. .4)

R follows from the first of the relations }2.3) that when | ¢ — 3| — 0,¢— 0. We therefore introduce the new
variables ¥ = ¢/2(c —3) and 7 = u Re’ W2, We rewrite (2.2) in the new variables

V4o —pp(d —p) = 0,p—>0 a5 T o0, (.. .) = dldr, 2.5)
p = (c — IW2Re-37,

We put forward some considerations in favor of the fact that as u— 0, Eq. (2.5) has a monotonic solu~
tion which is not a soliton. In fact, as can be seen from (2.5), the function §, which satisfies the equation
Po = uPo(l — Po), will also satisfy Eq. (2.5) with an accuracy to within terms ~pu% as p —~ 0, which suggests
that as u— 0 the solution of (2.5) changes asymptotically into the solution of the equation zp = ud (1 ~9),
which is a2 monotonic solution of a nonsoliton type. Indeed, this indicates that the solution of problem (2.5) as
p— 0 can be sought in the form of an asymptotic expansion in powers of u: $ = §p + ud; + p?dy +.... To
construct this expansion it is convenient to change to the coordinates of the phase plane  amd z = dy /ds,
where s = u7. In these coordinates problem (2.5), the initial approximation, and the asymptotic expansion
take the following form: .

z :——lp-ﬂ%?)—z-—,‘ 2(00=0, zy=v{1—19), 2=z, n2z, tpz,+... . (2.5")
2_% [z
h g (5)
It is difficult to calculate the expansion coefficients zydirectly from (2.5'). Hence, assuming that this expan-
sion reduces to a function having a finite derivative (z%/2)d*/dy? as p— 0, and noting that in this case the
right side of Eq. (2.5') is an analytic function of x® and, of course, can be expanded in a converging series in
: 2 2

powers of u?, we have z =19 (1-—1) [1 — d—i? (%)} +o(u%) or,after squaring,

dyp?

Equation (2.5") is linear with respect to the function & = z’ and has a solution which tends asymptotically (as
p— 0) to the function &, = ¥2(1 — 9)?, i.e., has a finite derivative d®®/dy?, which also ensures that (2.5')
will change to (2.5""). We will not dwell on the solution of Eq. (2.5"), and will merely note that it can be con-
_structed using the WKB method.

The above is confirmed by direct integration of Eq. (2.5') with the initial conditions z(0) = 0, dz/dgb|¢=0 =
Mpp<l,a+ad= i). It turns outf that this monotonic solution ceases to exist when p = yy = 0.2. So, ifa
solution of (2.5) exists in the form of a soliton, we must have p = |c — 3| W2Re™¥? > ;1) ~ 0.2, Using (2.4)
we therefore obtain a lower limit of the values of the amplitude of a stationary soliton

A > 2p,W-1/2Re%2 2.6)

2=y (1-—'1|>)2[1~u2 il (z*)‘]+o(u‘>. 2.5)

(for a water film W2Re3/2 w 0.025 Re''/s, A > (Re/10)1/8). It can be seen from (2.6) that the amplitudes of
solitons increase rapidly as the Reynolds number increases and become considerable (A ~ 1) when Re ~ W/3
(for water when Re = 10).
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Following [6] we will now give an approximate solution of (2.5) for a stationary soliton (i.e., when y >
ug = 0.2), using an analog of Galerkin's method. To be specific we will assume p ~(c —3) > 0 (the case of
negative p — negative solitons — reduces, as was shown above, fo the case of positive solitons with mirror-
image coordinates).

It can be seen that (2.5) possesses asymptotics ¥ — 0 of the following form: ¢ ~exp AT, 7 — — and
¥ ~exp (—AT1/2) sin (wT + 8),7 — + =, where A is the positive root of the equation

MA4A=np, 0=V11 @A 2.7)

These asymptotics have the required ("soliton") form (see Fig, lc, where we show a typical soliton observed
experimentally). Hence, we wish to obtain a solution of Eq. (2.5) possessing such asymptotics. We form
Galerkin's function from the asymptotics as follows:

P = Aexpit-H (1) + Bexp (———%T)sinmvH(— T). (2.8}

1, 1 <0,
Here H(v) = {0_ ©>0 is Heaviside's function; because of the nonuniformity of the problem with respect to

we can choose the origin of the reference system 7 = 0 in such a way that the initial phase (on the right) of
the oscillating asymptotic is equal to zero (as was done).

The coefficients A and B (of which A plays the role of the amplitude of the soliton) can be found from
the integral relations (2.3), which in the new variables have the form
S Ydt = 5' YAt = j Ppdr. 2.9)

Substituting (2.8) into (2.9) and introducing the notation o = wB/A, we obtain the following algebraic system
for o and A:
1 a 4 al a? 2 1 208
—_— I e 1_ ——1, e - A - reaansmey-veulll .
RS 2”( +1+7~“) o 3M(”+(1+xﬁ)(1+3x2)) @10

This system is solved for each A. We thereby obtain A(A). To carry out the calculations it is convenient to
introduce the new parameters A = sinh £, a=—Bcosh tinstead of @ and A. System (2.10) then takes the form

1—-§th§=.‘zi(1+§2), 1_;_53:__2_‘4(1_ 28%thg )

1-+2th%

Omitting the elementary calculations we will give the result, according to which the quantity A is practically
constant (independent of A).

A p—>0 A4A->172, a8 p= 08 4=1.62, a3 p>15
Am1.56. 2.11)

Since the amplitude of the soliton A = Ay in the yariables ¢ is related to the dimensional amplitude A
by the equations A = Ay = Ag/2(c — 3) = 6A/((h)2 (¢/u — 3)), where ¢ is the dimensional velocity of the
soliton, and (Tu) is the velocity of the liquid in the film averaged over the cross section (serving as the unit
of measurement of the velocities), we hence obtain

T=3¢y+ 3 j‘,:; 4, 2.12)

where (W) =(Q)/( h) = g(h®)/3v.

As has already been stated, the value of A is practically constant. But it then follows from (2.12) that
the velocity of the soliton depends linearly on the amplitude. This result agrees with the data obtained in [2,
3]. For a quantitative comparison of (2.12) with the experimental data these must be taken for the smallest
possible value of Re (it was stated above that (1.1) holds for small Reynolds numbers). From [2, 3] we took
data for the smallest of the Reynolds numbers given there (for Reynolds numbers corresponding to (Q)/v = 4
and v = 11,2.10® m?/sec). We then have (h) = 5.4-10™* m and (Y)/ h) ~150 sec”!. Substituting this into
(2.12) and then substituting A from (2.11) we obtain

¢ & 0.24 + 0.3(10°4) (2.13)

(K is in meters and ¢ is in meters/sec). For comparison with experiment a curve of (2.13) is given in Fig. 2
together with experimental data taken from [2] (see graph A in Fig. 10d).
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Hence, we have the following results:

1) For each value of the average thickness of the film (or what is the same thing, the Reynolds num-
ber) there is a single-parametric family of stationary solitons, a typical form of which is shown in Fig. 1c.
We can choose either u (or A) or the amplitude, or the velocity as the parameter of the family;

2) the amplitudes of the solitons of the family for each value of Re have a lower bound;
3) the velocity of a soliton is proportional to the amplitude;

4) the amplitudes of the solitons increase rapidly as the Reynolds number increases and when Re =~ 10
(for water) they become comparable with the thickness of the film.

In conclusion it should be said that the soliton itself should be unstable in its plane (asymptotic, unper-
turbed) part in view of those mechanisms which make the plane Nusselt mode of the film unstable. In view
of this instability perturbations should develop in the tail and forerunner of the soliton. Since in the main
(central) part the motion has the form of a soliton, this indicates that a soliton, for those Reynolds numbers
for which it is observed, is competitive and suppressesquasiharmonic waves, and it is natural to expect that
perturbations of the asymptotes of a soliton will be converted in turn into a soliton etc., which leads in the
final analysis to the formation of an irregular system of solitons. Precisely this pattern has been observed
in [1-3] when the solitons are not excited artificially. Nevertheless, in a number of experiments [1-3] regu~
lar sets of solitons were produced artificially. Assuming that these can move in a stationary manner (with
velocity c), we have Eq. (2.1) for them. Integrating (2.1) once we obtain

3 — c)p 4 ¢¥2 + Re ¢" + Wg'"' = const. 2.14)

Multiplying (2.14) by ¢ and averagmg over x (the quantity ¢ ¢" in this case disappears since it is a total de~-
rivative), we obtain (3 — ¢) { @) + (1/2){¢3) = const{ ¢} = 0 (we have taken into account the fact that {p) = -
(h/{h) - 1) = 0). Hence we have
1 (e® (% '
15 =3 =31 = . 2.15
. ) c=3+3 Z {¢ ) ( + ((p2>) ( )
Like all the results obtained above, Eq. (2.15) holds for small Reynolds numbers.

The authors thank I. R. Shreiber for stimulating discussion, and V. E. Nakoryakov and B. G. Pokusaev
for their interest.
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