
is m o r e  pronounced:  The ve loc i t yp ro f l l e s  in the f lows a r e  not the s a m e  in a l l  the sec t ions ,  and the r a t io  of 
the flow r a t e s  K in the m a j o r i t y  of  the sec t ions  is  l e s s  than 0.7. The  tabulated data  a l so  conf i rm that  a r e -  
duct ion in Ra is accompan ied  by an i nc r ea s e  in the t h r e e - d i m e n s i o n a l  na ture  of the flow. 

Hence,  the p r e s e n c e  of t r a n s v e r s e  r ibbing on one of the wal ls  of a v e r t i c a l  convect ion layer  of liquid 
cause s  the appea rance  of t h r e e - d i m e n s i o n a l  flow. The  p r e s e n c e  of this  phenomenon in the flow e l imina tes  
the poss ib i l i ty  of calculat ing the flow p a r a m e t e r s  using methods  appl icable  to p l ane -pa r a l l e l  flows and r e -  
qu i r e s  a spec ia l  study. 

The  author  thanks A. G. Ki rdyashk in  for  sugges t ing  the invest igat ion.  
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D R A I N I N G  L I Q U I D - F I L M  S O L I T O N S  

L .  N. M a u r i n  a n d  A.  A .  T o c h i g i n  UDC 532.592 

One-d imens iona l  so l i t a ry  waves  (solitons) which can  move on the su r face  of a thin l ayer  of a v iscous  
liquid, dra ining in a ve r t i c a l  plane,  a r e  invest igated.  The  f i r s t  ( exper imen ta l )  desc r ip t ion  of such waves  was 
given in [1] ; l a te r ,  quant i ta t ive m e a s u r e m e n t s  of  the i r  c h a r a c t e r i s t i c s  w e r e  c a r r i e d  out [2, 3] and a t t empt s  
w e r e  made  to explain  them theore t ica l ly .  In [4-6] the nature  of these  waves  a r e  d i scussed  and some  of thei r  
p r o p e r t i e s  a r e  pointed out. In [7] the view is put fo rward  that  a s ta t ionary  solution is the l imit ing solution of 
a quas iha rmonic  type as  the wave number  is  reduced.  In this paper  we c a r r y  out a qual i ta t ive ana lys i s  of the 
evolut ion of a nons ta t ionary  sol i ton and on the ba s i s  of the ana lys i s  we explain its shape.  The  fundamental  
c h a r a c t e r i s t i c s  of a s t a t ionary  sol i ton (the ampli tude and velocity) a r e  ca lcula ted  and the r e su l t s  obtained a r e  
c o m p a r e d  with e x p e r i m e n t a l  data. 

1. The  equat ion ibr  the waves  in a ve r t i ca l ly  draining f i lm of v i scous  liquid for low Reynolds numbers  
is wel l  known and can  be  obtained by  dif ferent  methods .  Assuming  long weakly  nonlinear waves ,  the equation 
takes  the f o r m  

(Pt q- 3(Pz q- q)~x ~ Re ~0xx -]- W~xxx ~ = O, (1.1) 

where  r = 6 ( h -  ( h > ) / (  h) ;  h is the local  th ickness  of the f i lm, ( h )  is the th ickness  of the f i lm ave raged  
over  the length, t is d imens ion les s  t ime ,  x is the d imens ion less  v e r t i c a l  coordinate  (downwards) (the sca le  
for  m e a s u r i n g  the length is (h> ,  the sca le  for m e a s u r i n g  t ime  is 3ug - l (h>  -~, v is the v i scos i ty ,  and g is the 
a c c e l e r a t i o n  due to g r av i ty ) ,  Re = 2g(h>a/5u 2 is Reynolds number ,  and W = (r/pg(h~ 2 is W e b e r ' s  number  ((~ 
is the su r f ace  tens ion  and p is the densi ty  of the liquid).  

Toge the r  with the B u r g e r s  and Kor teweg - d e  V r i e s  equations,  Eq. (1.1) belongs to the number  of  so -  
ca l led  nonl inear  evolution equations.  The  t r e a t m e n t  of the quanti t ies  r and (p2/2 as  the m o m e n t u m  densi ty  
and ene rgy  densi ty  is c o m m o n  to these  equations (this t r e a t m e n t  is r e l a t ed  to the Gal i lean invar iance  of the 
nonl inear  evolut ion equations).  By confining ou r se lves  hencefor th  to cons ider ing  only so l i t a ry  ~ a v e s  (solitons) 

for which ~ ~ 0 as  x ~ + ~o, in which case  there  a r e  in tegra l s  of the fo rm -~ (p~ (x, t) dx, ~ r (x, t) dx, 
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~ (x,t) dx, we obtain f r o m  (1.1) the laws of va r i a t i on  of the m o m e n t u m  and the ene rgy  ~ -  ~dx = 0 ,  
. - - r  - - v o  

0 ~ 
o'-i" -~- dx = Re ~dx --  W r It  can be  s een  that  the t e r m  Re ~ in Eq. (1.1) d e s c r i b e s  the pumping 

of e n e r g y  into the wave  Propor t iona l  to the Reynolds number ,  while the t e r m  Wqxxxx d e s c r i b e s  the ene rgy  
d iss ipa t ion ,  where  ene rgy  pumping occu r s  a t  the low f r e q u e n c i e s  and d i ss ipa t ion  a t  the high f requencies .  

We will  now use  the m o m e n t u m  of a sol i ton to define the idea of veloci ty:  Wewi l l  define the ve loc i ty  of 
a sol i ton as  the ve loc i ty  of  p ropaga t ion  of m o m e n t u m  (for a sotiton, which is fo rmed  local ized space  and has  
a cons ide rab le  s p e c t r a l  s p r e a d  of wave n u m b e r s  and in which ene rgy  exchange with the  med ium occurs  by  
pumping and d iss ipa t ion ,  the definit ion of the ve loc i ty  as  the group  ve loc i ty  a t  which the energy  is  Propagated 

is  not  s u c c e s s f u l ) .  By defining the pos i t ion  of the m o m e n t u m  a s  ~ = z~dx ~dx , w e  obta in  (using (1.1)) 

the  following e x p r e s s i o n  for  the ve loc i ty  of  a soli ton: 

- -  ~ - - c o  

= =3-~ 2 

- - ~ o  - - c o  

Note that  the definit ion of the ve loc i ty  of a wave  packet  as  the ve loc i ty  of p ropaga t ion  of the momen tum for 
l i nea r i zed  s p e c t r a l l y  na r row  wave packe ts  leads  to the usual  group veloci ty .  In fact ,  we will  cons ider  a p e r -  
tu rba t ion  having the f o r m  of a spec t r a l l y  na r row  wave packet  with a c a r r i e r  wave number  1% : ~o( x, t )  = 
A (x, t )  exp  ( -i1% x + k0 0 t ) ,  where  A ( x, t )  is  a s lowly va ry ing  ampl i tude (dec reas ing  as  x - -  �9 ~ ) .  Expanding 
A (x, t )  in a F o u r i e r  in tegra l  we obtain  

o o  
,* 

(x, t) = J ~ (k) e~(~-~o~-~r176 dk. 
- - o o  

We fur ther  have  

- n o  - ~  - r  

--  2hi ~ ~r (k) e-i(~ -~Dt ,5 (k  - -  ko) dk  

c~dx ~r e-i(~176176 ~ei(k-h~ 2~ ~ r e-i(~-~~ 
- - ~  - - o r  - - ~  - - o r  

= ,  ~--~o) + t - ~  

F r o m  this  we obtain v s = d ~ / d t  = d w / d k [ k =  1%- 

Turn ing  now to a d i scuss ion  of the p r o p e r t i e s  of the sol i tons of  Eq. (1.1) we note that  in  view of the con-  
o O  

s e r v a t i o n  of the qnanti ty fo r can int roduce a t i m e - i n v a r i a n t  c lass i f i ca t ion  of sol i tens ,  namely ,  we will  ca l l  

a sol i ton pos i t ive  (negative) i f  i ts  m o m e n t u m  (which has  the g e o m e t r i c a l  meaning  of area)  is posi t ive  (nega-  
t ive) .  In th is  c a se ,  i t  follows f r o m  the e x p r e s s i o n  given above for  v s (the sol i ton velocity) that  for  a posi t ive  
sol i ton  v s > 3, and for a negat ive  sol i ton v s < 3. We will  r eca l cu l a t e  (1.1) to the r e f e r e n c e  s y s t e m  ~ = x - 3t 

~t ~- q~% ~ Re %~ ~ W q ~  = 0. (1.2) 

It can  be  s een  that  (1.2) i s  invar ian t  to  the t r a n s f o r m a t i o n  ~--  - ~ ,  ~0 ~ - ~ .  Since this t r a n s f o r m a t i o n  conver t s  
a pos i t ive  sol i ton into a negat ive  one, we see  that  a negat ive  sol i ton is s imp ly  an  invers ion  (in the s y s t e m  of 
axes  ~ = x - 3t and y - < h)) of a pos i t ive  soliton. Hence,  below, to be  speci f ic ,  we cons ider  a posi t ive so i l -  
ton. 

We wil l  now make  a qual i ta t ive  ana lys i s  of the p a r t  p layed by the individual t e r m s  in Eq. (1.2) in the 
evolut ion of a (positive) soli ton,  r ega rd ing  them a s  t e r m s  which make  a contr ibut ion to ~0 t. To  do this we will  
cons ider  the equat ions 

q~t + q~q~ = O, % + Re q~ = O, % + W q ~  ---- O. (1.3) 

The  f i r s t  of  these  equat ions d e s c r i b e s  a s imple  wave ~0 = f( ~ - ~ot). The  mot ion  of this  wave is a c c o m -  
panied by  an i n c r e a s e  in the cu rva tu re  of  the leading f ront  (in the ~ sys tem)  and a reduct ion in the cu rva tu re  
of  the t ra i l ing  front.  
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If r } ) >_ 0, tim leading f ront  will  be the r ight  f ront  (a s imple posi t ive wave moves  to the r ight) .  
This  de te rmines  the ro le  of the t e r m  r 

The  second of Eqs.  (1.3) desc r ibes  diffusion with a negative coefficient .  Hence,  the t e r m  Re ~0~ leads 
to a monotonic inc rease  in the gradients  in the wave (it is responsib le  for  the instabil i ty of the t r iv ia l  solu-  
t ion r ~- 0). 

To explain the par t  played by the t e r m  W~0}~}~ we cons ider  the th i rd  of the equations (1.3). Its solution 
o o  

has the form (p (~, t) = t ~" ~(k) exp (-- ik~ -- Wk4t)dk, a (k) ---- y (p (~, 0) exp (ik~) d~ Using themethod  of s ta t ion-  

a ry  phase,  we obtain the asymptot ic  for  la rge  ~ (and for l a rge  t )  

It is seen  f rom (1.4) that the t e r m  W~off f f  leads to a reduct ion in the function ~ and its gradients ,  but  
(and it  is impor tant  to emphas ize  this) this reduct ion,  unlike diffusion, has  a nonmonotonic cha rac t e r ,  and has 
the fo rm of decaying osci l la t ions (on both sides).  But it can also be seen  that the phase of these osci l la t ions 
is constant  when ~4z3t-1/a = const,  and, of course ,  the phase veloci ty  of the osci l la t ions is equal to ~ ~ C 3/a 
Since t is a s sumed  to be la rge ,  the osci l la t ions do not  in p rac t ice  move with r e spec t  to the solitom 

The combined act ion of a l l  the t e r m s  in (1.2) is such that when a sufficiently coa r se -ampl i tude  (but 
mildly  sloping) per turba t ion  ~a(t0, ~) _> 0 ac ts ,  the t e r m  ~0~ init ially plays a decis ive  ro le  in its evolution, 
deforming this per tu rba t ion  in such a way that the leading (in the ~ system) (right) front  becomes  steep,  while 
the t ra i l ing  (left) f ront  becomes  more  mildly sloping. Since only the slope of the leading front  becomes  fair ly  
la rge ,  a t  points of cons iderable  slope cons iderable  d i spers ion  t e r m s  Re ~0~ and W ~ 0 ~  a r i s e ,  the actions 
of which a r e  different:  Whereas  the f i r s t  of these  tends to inc rease  the gradient  ~ ,  the second, on the o ther  
hand, d e c r e a s e s  these  gradients .  In the final analys is  it is the action of the t e r m  W ~  which s tabi l izes  the 
slope of the wavefront  and prevents  it  f rom revers ing .  

Since, in addition, this t e r m  produces  (stat ionary) osci l lat ions attenuating along ~, these osci l lat ions 
a l so  occupy pa r t  of the leading front  (on the mildly sloping t ra i l ing f ront  of the wave the smal lness  of the 
gradients  enables  one to neglect  the e f fec t  of the d ispers ion  t e r m s  s o t h a t ,  in pa r t i cu la r ,  osci l la tkms also do 
not occur  there) .  

Since when ~ (to, ~) _> 0 the veloci ty  of propagat ion of a dis turbance is positive in the ~ = x - 3t s y s -  
t em,  it  moves  to the r ight  both with r e s p e c t  to the l abora tory  r e f e r e n c e  sys tem x, and with r e sp ec t  to the 
sys tem.  Hence,  in both r e f e r e n c e  sys t ems  the leading front  is one and the same - the r ight  f ront  of the wave, 
and in connect ion with what was said above the soli ton acqui res  with t ime the shape shown in Fig. l a .  When 

( to, ~ ) _< 0 the per turba t ion  moves  to the left  with r e s p e c t  to the ~ r e f e r e n c e  sys tem so that its s teep front  
wil l  be  the lef t  front.  In the x r e f e r e n c e  sys tem this  f ront  is the t ra i l ing front  of the soliton. Since d i spers ion  
spreading  occurs  only at  the s teep front,  in a negative soli ton the t ra i l ing  f ront  will  be spread  (Fig. lb).  

This  account  ag rees  with the resu l t s  of exper imen ta l  observat ions  [1-3]. However ,  exper iments  indi-  
cate  quite defini tely the exis tence  of posi t ive and not negative solttons. This  is obviously due to the fact that 
a c l ea r ly  e xp r e s sed  sol i ton (as is seen  f rom exper iments)  has  a large ampli tude which exceeds  severa l fo ld  
the average  th ickness  of the film. Th is  is only for posi t ive solitons (in negative solitons the ampli.tude, of 
course ,  cannot exceed  the average  thickness  of the fi lm, o therwise  adhesion to the wall  occurs ;  negative so l i -  
tons,  being of low ampli tude,  cannot be seen  on a background of l a rge-ampl i tude  posi t ive solitons). 

2. The  above-ment ioned physical  mechan ism by which ene rgy  is pumped at  low f requencies  and d i s s i -  
pated at  high f requencies ,  in pr inciple ,  enables the energy  to r ema in  constant ,  which should make s ta t ionary  
mot ion of  a sol i ton possible ,  i .e . ,  a solution of Eq. (1.1) for  which ~ (X, t) = (p (x - c t ) .  For  s ta t ionary  motion 
(1.1) takes  the form 

--cq)' + 3q/ + q)(p' + Re (p" + W@ v = O, ( . . . ) '  = d/du, (2.1) 
u = x - - c t .  

Integrating this equation with the boundary condition ~o ~ 0 as  u ~ - o o  (or u ~ + oo), we obtain 

(3 -- c)q~ + q~/2 + Re (p' + Wq/"  ----- 0, (p --+ 0 for u---~ :i:oo. (2.2) 

Hence we have two re la t ions  for a s ta t ionary  soli ton 
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~t ~ ~  t~>~  

~7 

C 

Fig. 1 

(3 - -  c) q)du + ~ r =- O, 3 - -  c -{- r  = O. (2.3) 

It follows f r o m  the second of the r e l a t i ons  (2.3) tha t  the b r a c k e t s  (3 - c  + q / 2 )  a l t e rna te ,  and s ince when 
n - ~  • o o  ~p - -  0 we have  sup l~a ] > 2 ] c - 3 I. Int roducing the ampl i tude  of the sol i ton A = s u p  I q - 0 ], we 
obtain  

A > 2]c - -  31. (2.4) 

It follows f r o m  the f i r s t  of  the r e l a t ions  (2.3) that  when I c - 31 -* 0, ~o-~ 0. We t h e r e f o r e  introduce the new 
v a r i a b l e s  ~ = ~ / 2  (c - 3) and ~ = u ReI/2W-~/2. We r e w r i t e  (2.2) in the new v a r i a b l e s  

" ~ ' + ~  - - I~ ( t  - - r  = 0, tp-~0 a s  T--~ --4~cr (. : . )  = d/dx, (2.5) 
= (c - -  3)WZ/2Re -3n. 

We put fo rward  s o m e  cons idera t ions  in favor  of  the fact  that  as  # -~ 0, Eq. (2.5) has  a monotonic so lu -  
t ion which i s n o t  a s01itom In fact ,  as  can  be  s een  f r o m  (2.5), the function ~b 0 which sa t i s f i e s  the equation 
~0 = /z$0(1 - ~b0), will  a l so  sa t i s fy  Eq. (2.5) with an  a c c u r a c y  to within t e r m s  ~#3 as  # -*.0, which sugges ts  
tha t  as  g -*  0 the solution of (2.5) changes  a s y mpto t i c a l l y  into the solution of the equat ion ~b = g~b (1 - r 
which is  a monotonic  solut ion of a nonsoI i ton type.  Indeed,  this  indicates  that  the solut ion of p r o b l e m  (2.5) as  
/~ -~ 0 can  be  sought in the fo rm of an  a sympto t i c  expans ion  in powers  of /~  : ~b = ~0 + /ar + #2 ~2 + . . . .  To  
cons t ruc t  this  expans ion  i t  is convenient  to change to the coord ina tes  of the phase  plane ~ and z = d ~ / d s ,  
whe re  s = /~T. In these  coord ina tes  p r o b l e m  (2.5), the ini t ial  approx imat ion ,  and the a sympto t i c  expansion 
take  the following fo rm:  

* (t  - -  r  z (0) = 0 ,  z o = ~ ( l  - -  , ) ,  z = z o + ~"z~ + ~ t 4 z ~  + . . . .  ( 2 . 5 ' )  Z ~ 2 d2 Z2 

It  is  diff icul t  to  ca lcu la te  the expans ion  coeff ic ients  z n d i r e c t l y  f r o m  (2.5v). Hence ,  a s suming  that  this  expan-  
s ion  r educes  to a function having a finite de r iva t ive  (z~/2)d2/d$ 2 as  ~ -~  0, and noting that  in this case  the 
r igh t  s ide of Eq. (2.5 ~ ) is an  analy t ic  function of g2 and,  of cour se ,  can be  expanded in a converging s e r i e s  in 

powers  of /a2, w e h a v e  z = ~ p ( l . _ ~ p ) [ t _ ~ t  ~ ~2 ( ~ ) ]  ~-~ A- o (~4) or ,  a f t e r  squaring,  

z ~ = r  t - ~  - ~  (z ~) + o ( ~ ) .  (2.5") 

Equation (2.5") is  l inear  with r e s p e c t  to the function 6 = z 2 and has  a solut ion which tends asympto t ica l ly  (as 
/z-* 0) to the  function r = ~2( 1 - $)2  i .e . ,  ha s  a finite de r iva t ive  d2~/d~ 2, which a l so  e n s u r e s  that  (2.5~) 
wi l l  change to (2.5"). We will  not  dwell  on the solut ion of Eq. (2.5"),  and will  m e r e l y  note that  i t  can  be  con -  
s t ruc t ed  using the WKB method.  

The  above is cc~f i rmed  by  d i r e c t  in tegra t ion  of Eq. (2.5') with the ini t ial  conditions z (0) = 0, dz/d~bl~= 0 = 
X//a (u << 1, k + ~3 = g) .  I t  tu rns  out tha t  th is  monotonic  solut ion c e a s e s  to ex i s t  when g = #0 ~ 0.2. So, if  a 
solut ion of (2.5) ex i s t s  in the f o r m  of a soli ton,  we  m u s t  have g ~- I c - 31Wi/2Re-a/2 > go ~ 0.2. Using (2.4) 
we t h e r e f o r e  obtain a lower  l imi t  of the va lues  of the ampl i tude of a s t a t iona ry  so l i ton  

A > 2~oW-Z/2Re ~/~ (2.6) 

(for  a w a t e r  f i lm W-l/2Re 3/2 ~ 0.025 Re ll/~, A > (Re/10)ll/6). It  can  be  seen  f r o m  (2.6) that  the ampl i tudes  of  
sol i tons  i nc r ea se  r a p i d l y  as  the Reynolds n u m b e r  i n c r e a s e s  and b e c o m e  cons iderab le  (A ~ 1) when Re ~ W ~/~ 
( for  w a t e r  when Re ~ 10). 

430 



Following [6] we will  now give an approximate  solution of (2.5) for  a s ta t ionary  sol i ton ( i .e . ,  when /~ > 
~d ~ 0.2), using an analog of Galerk in ' s  method. To  be specif ic  we will  a s sume  ~ ~ (c - 3) > 0 (the case  of 
negative # - negative soli tons - r educes ,  as  was shown above,  to the case  of posit ive soli tons with m i r r o r -  
image coord'mates).  

It can  be seen  that  (2.5) pos se s se s  asymptot ies  ~-~ 0 of the following form: ~b ~ exp ~ r ,  ~ - * - ~  and 
~ exp ( - k ~ / 2 )  sin (w~ + 5) ,  T --- + oo, where  ~ is the  posi t ive roo t  of the equation 

L 8 -{- k = ~, 0) ---- V'i + (3/4)L ~. (2.7) 

These  asympto t ics  have the r equ i r ed  ("solitoff') fo rm (see Fig. l c ,  where  we show a typical  soliton observed  
exper imenta l ly) .  Hence,  we wish to obtain a solution of Eq. (2.5) possess ing  such asymptot ics .  We fo rm 
Galerk in ' s  function f rom the asymptot ics  as follows: 

~p ~ A exp L~. H (x) + B exp (--  o)~. H (-- ~). (2.8) 

l, �9 < 0, 
Here  //(~) = 0, �9 > 0 is Heavis ide ' s  function; because  of the nonuniformity of the problem with r e spec t  to r 

we can choose the or ig in  of the r e f e r e n c e  sys t em r = 0 in such a way that the initial phase (on the r ight)  of 
the osci l la t ing asymptot ic  is equal to ze ro  (as was done). 

The  coeff ic ients  A and B (of which A plays the ro le  of the amplitude of the sollton) can be found f rom 
the in tegra l  re la t ions  (2.3), which in the new va r i ab les  have the fo rm 

Substituting (2.8) into (2.9)and introducing the notation ~ = wB/A,  we obtain the following a lgebra ic  sys tem 
for  a and A: 

l a A i + ~  i +  i ~  XA -~ ( t+X') ( !+3X ~) Y + i + ~ =  2-Y ' = 

This  sys tem is solved for each  h. We thereby  obtain A( X ). To  c a r r y  out the calculat ions it is convenient  to 
introduce the new p a r a m e t e r s  X = sinh ~, a = - f l c o s h  ~ instead of a and X. System (2.10) thentakes  the form 

2 ( 2~ ~th~ 
A ( t + ~ )  ' t + ~ - - - - $ A  _t-- t.~_2th~). 

Omitting the e l emen ta ry  calculat ions we will  give the resu l t ,  accord ing  to which the quantity A is p rac t ica l ly  
constant  ( independent of X). 

As ~--~0 A-+ i . 7 2 ,  as t~= 0.8 A = i . 6 2 ,  as ~ t ~ 1 . 5  
A~1.56. (2.11) 

Since the ampli tude of the soli ton A =~A~ in the vas iables  ~b is r e , t e d  to the dimensional  ampli tude 
by the equations A = A@ = A ~ / 2  (c - 3) = 6A/((  h ) 2 ( c / u  - 3)), where  c is the dimensional  veloci ty  of the 
soliton, and ( u )  is the veloci ty  of the liquid in the fi lm averaged over  the c ros s  sect ion (serving as the treat 
of m e a s u r e m e n t  of the veloci t ies) ,  we hence obtain 

~ 3 <~> .~, ( 2 . 1 2 )  c = 3 <u> -F ~" "2~ 

where  (u~ = ( Q ) / ( h )  = g ( h Z ) / Z v .  

AS has  a l r eady  been  stated,  the value of A is p rac t ica l ly  constant.  But it then follows f rom (2.12) that 
the ve loc i ty  of the sol i ten depends l inear ly  on the amplitude.  Th is  r e su l t  ag rees  with the data obtained in [2, 
3]. F o r  a quanti tat ive compar i son  of (2.12) with the exper imenta l  data these must  be taken for the smal les t  
poss ible  value of Re (it was s ta ted above that (1.1) holds for smal l  Reynolds numbers) .  F r o m  [2, 3] we took 
data  for  the sma l l e s t  of the Reynolds numbers  given there  (for Reynolds numbers  cor responding  to ( Q ) / v  = 4 

and v = 11 .2 .10  -6 m2/sec) .  We then have (h) = 5 .4 .10  - a m  and ( u ) / ( h )  ~150 sec -~. Substituting this into 
(2.12) and then substi tuting A f rom (2.11) we obtain 

cN~ 0.24 + 0.300s.4) (2.13) 

(A is in m e t e r s  and ~ is in m e t e r s / s e e ) .  Fo r  compar i son  with exper imen t  a curve  of (2.13) is given in Fig. 2 
together  with exper imenta l  da ta  taken f rom [2] (see graph A in Fig. 10d). 
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Fig .  9. 

Hence, we have the following results:  

1) For each value of the average thickness of the film (or what is the same thing, the Reynolds num- 
ber) there  is a s ingle-parametr ic  family of stationary solitons, a typical form of which is shown in Fig. lc .  
We can choose ei ther ~ (or ~) or the amplitude, or the velocity as the parameter  of the family; 

2) the amplitudes of the solitons of the family for each value of Re have a lower bound; 

3) the velocity of a soliton is proportional to the amplitude; 

4) the amplitudes of the solitons increase rapidly as the Reynolds number increases and when Re ~ 10 
(for water) they become comparable with the thickness of the film. 

In conclusion it should be said that the soliton itself should be unstable in its plane (asymptotic, unper- 
turbed) part  in view of those mechanisms which make the plane Nusselt mode of the film unstable. In view 
of this instability perturbations should develop in the tail and forerunner of the soliton. Since in the main 
(central) part  the motion has the form of a soliton, this indicates that a soliton, for those Reynolds numbers 
for which it is observed, is competitive and suppressesquastharmonicwaves,  and it is natural to expect that 
perturbations of the asymptotes of a soliton will be converted in turn into a soliton etc.,  which leads in the 
final analysis to the formation of an i r regular  system of solitons. Prec ise ly  this pattern has been observed 
in [1-3] when the solltous are  not excited artificially. Nevertheless,  in a number of experiments [1-3] regu-  
lar  sets of solitons were produced artificially. Assuming that these can move in a stationary manner (with 
velocity c), we have Eq. (2.1) for them. integrating (2.1) once we obtain 

(3 -- c)~ ~ r ~- Be r ~- W~'" = const. ~2.14) 

Multiplying (2.14) by 9 and averaging over x (the quantity 9 9" in this case disappears since it is a total de-  
rivative), we obtain (3 - c) ( 92 ) + (1/2)(  9"~ = const(  9~ = 0 (we have taken into account the fact that (~) = 
( h / ( h ) -  1) = 0). Hence we have 

15) c = 3 + i <~s> 3 + <~s> ~ (2 .15)  

Like all the resul ts  obtained above, Eq. (2.15) holds for small Reynolds numbers. 

The authors thank I. R. Shreiber for stimulating discussion, and V. E. Nakoryakov and B. G. Pokusaev 
for their  interest .  
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